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Abstract: This paper focused on the problem of diagnosis of Alzheimer’s disease via the combination
of deep learning and radiomics methods. We proposed a classification model for Alzheimer’s
disease diagnosis based on improved convolution neural network models and image fusion method
and compared it with existing network models. We collected 182 patients in the ADNI and PPMI
database to classify Alzheimer’s disease, and reached 0.906 AUC in training with single modality
images, and 0.941 AUC in training with fusion images. This proved the proposed method has better
performance in the fusion images. The research may promote the application of multimodal images
in the diagnosis of Alzheimer’s disease. Fusion images dataset based on multi-modality images
has higher diagnosis accuracy than single modality images dataset. Deep learning methods and
radiomics significantly improve the diagnosing accuracy of Alzheimer’s disease diagnosis.

Keywords: image classification; muti-modality fusion; neural network

1. Introduction

With the aging problem aggravating in China, the prevalence of Alzheimer’s disease
(AD) increases year by year. Diagnosis of Alzheimer’s disease is critical, and multimodal
diagnosis is an indispensable diagnostic method for Alzheimer’s disease [1]. Multimodal
image fusion techniques combine different modalities of medical images into a single
image that can contain more information. Due to the lack of specific diagnostic features,
convolution neural networks are trained to assist in the diagnosis of Alzheimer’s disease [2].

1.1. Alzheimer’s Disease
1.1.1. Status of Alzheimer’s Disease

Alzheimer’s disease, commonly known as senile dementia, is an insidious onset cog-
nitive and behavioral disorder, of which the morbidity rate keeps increasing. Alzheimer’s
disease is one of the most common types of dementia [3]. Figure 1 shows a comparison
between the normal brain and the brain with Alzheimer’s disease. The main clinical symp-
toms of Alzheimer’s disease are psychiatric symptoms and behavioral disorders including
progressive memory loss, cognitive impairment, etc. [4]. Alzheimer’s disease has been
discovered for more than a century, but the current research institutions still lack diagnosis
technology and effective treatment to it. Consequently, Alzheimer’s disease is treated as a
global problem [5]. The pathogenesis of Alzheimer’s disease is very complicated, which
seriously infects the elder’s life quality, and also brings a heavy burden to the family and
society. Hence, the diagnosis is of great significance in delaying the process of disease and
improving the quality of life. In Figure 1, comparison between a healthy brain and an
Alzheimer’s disease patient’s brain is displayed. The Alzheimer’s disease patient’s brain
is characterized by neural amyloid plaques and neurofibrillary tangles, which result in
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severe neurodegeneration, including shrinkage of the hippocampus and other cerebral
cortices [6].

Figure 1. Difference between healthy brain and AD (Alzheimer’s disease) patients (adapted from
ref [6]).

1.1.2. Multimodality Diagnosis of Alzheimer’s Disease

Multimodal diagnosis is an exhibition of the structural and functional imaging of brain
images by a variety of imaging devices. By comparing the differences between various
images and healthy brain image templates, the result reflects the image characteristics of
Alzheimer’s disease. It has been shown that in diagnosis and prognosis of Alzheimer’s
disease, multi-modal use may improve the performance more than a single modal [7]. In
2019, Zhou et al. [8] focused on how to make the best use of multimodal neuroimaging and
genetic data for Alzheimer’s disease diagnosis. They proposed a three-stage deep feature
learning and fusion framework, and proved the superiority of using multimodality data
through experiments. In 2021, for Alzheimer’s disease diagnosis with incomplete modali-
ties, Liu et al. [9] proposed an Auto-Encoder, which can complement the missing data in the
kernel space. This can help solve the problem of incomplete medical data. Such research
promotes the development of multimodal technology in the field of Alzheimer’s disease.

The project intends to use T2-weighted Magnetic Resonance Imaging (T2-MRI) and
positron emission tomography (PET). The lesions of T2-MRI in Alzheimer’s disease focus
on atrophy of brain regions such as hippocampus, amygdala, and entorhinal cortex. Studies
have confirmed [10] that the hippocampus atrophy is earlier than other clinical symptoms
of the disease, which is an early critical characteristics performance of Alzheimer’s disease
and can be used as an early specific and sensitive predictor. The only way that the
brain gains energy is glucose uptake. Accordingly, the extent of Alzheimer’s disease can
be determined according to differences in glucose uptake in various parts of the brain.
18F-flurodeoxyglucose (18F-FDG) PET imaging shows a phenomenon in patients with
Alzheimer’s disease where the area of both sides of the temporal lobe and parietal lobe
demonstrates a symmetrical decrease in glucose metabolism, and with the deteriorating of
condition, the phenomenon spreads from the temporal lobe to the other cortical areas [11].
PET uses a unique imaging technique to present metabolic changes of glucose in the brain,
which can be used to map the distribution of the lesions. In Figure 2, two different modality
images of Alzheimer’s disease patients are displayed.

Figure 2. (a) T2-weighted MR (Magnetic Resonance) image of AD. (b) PET (Positron Emission
Tomography) image of AD.
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1.2. Multimodal Image Fusion Technology

Multimodal image fusion technology polymerizes the medical images of different
modes into a single image set, and the images from different imaging systems are aggre-
gated into a new output image [12]. Different modality medical images focus on different
contents, and multimodal fusion technology can achieve the integration of functional image
and anatomical image through the designed algorithm. Fusion image contains more useful
information and makes the image more suitable for human vision processing, and for this
reason it plays an important role in the diagnosis and treatment of diseases.

Meanwhile, multimodal image fusion is divided into three levels: pixel-level fusion,
feature-level fusion and decision-level fusion. Among them, pixel-level fusion is the lowest
level fusion, which is the direct fusion between pixels on the pixel level. Figure 3 illustrates
how the fusion process works and displays an example of fusion. Pixel-level fusion has
many advantages. Compared with others, it can restore the previous information of the
image and contain more details of the image. So, the pixel-level fusion has the most
application among these three fusion layers.

Figure 3. (a) T2-weighted MRI image. (b) PET image. (c) Fusion result of pixel-level fusion method.
(d) Pixel-level image fusion flow chart.

1.3. Deep Learning and Convolution Neural Networks

Recently, deep learning has become a hot research topic in the field of machine learning,
and has made many achievements in computer vision and speech recognition [13–15].
Varied deep learning methods such as deep neural network (DNN), convolution neural
network (CNN), and recurrent neural network (RNN) have been implemented to diagnose
human neurological disorders [14].

Deep learning is derived from artificial neural network, whose essence is the estab-
lishment of simulation structure of human brain neural networks and form a high-level
feature representation through the combination of low-level features, in order to achieve
efficient processing of complex data [15]. In 1962, Hubel [16] first proposed the concept of
a receptive field; in 1980, Fukushima [17] proposed a neural perceptron based on receptive
field, and implemented the first CNN model. Subsequently, LeCun et al. [18] applied
Back Propagation (BP) algorithm to CNN training, and successfully completed the image
recognition. CNN has attracted extensive attention because of its parallelism, distortion,
and robustness. One example shows the application of deep learning diagnosis [19]. Ad-
ditionally, CNN and RNN are found to present better results than other deep learning
methods in diagnosing Alzheimer’s disease [14].

CNN is a feedforward neural network with local connection and weight sharing.
Each layer of neural networks consists of a pair of two-dimensional planes, and each
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pair of two-dimensional planes is composed of a convolution layer and a lower sampling
layer. Convolutional layer is also called feature extraction layers, which consist of multiple
independent neurons. The function of convolutional layer is to extract the input data
characteristics, and this approach is closer to the treatment of the human brain vision
system. Figure 4 shows the basic structure of convolution neural network.

Figure 4. Basic structure of convolution neural network.

2. Research Contents and Methods
2.1. Image Data

A total of 102 Alzheimer’s disease patients corresponding to their T2-MRI and PET
images, and images of 80 patients with normal cognition as control group were collected
from ADNI database, PPMI database. The dataset was composed of the corresponding MRI
and PET images of each patients, which were all labeled by professionals in Alzheimer’s
disease research. Figure 5 shows one of the samples in the project group dataset, T2-MRI
and PET image of a patient, respectively.

Figure 5. (a) AD patient’s PET image. (b) AD patient’s T2-MRI image.

2.2. Image Preprocessing

We collected images from the ADNI and PPMI database, and preprocessed the images
to improve the recognition accuracy. The preprocessing process is divided into three parts,
including gray level transformation, histogram equalization and wavelet soft-threshold
denoising. The flow chart of the preprocessing is shown in Figure 6. In the following, we
will discuss them separately.

Figure 6. Flow diagram of preprocessing.

Gray level transformation maps image gray-scale from 0 to 255. We histogram equalize
the image to adjust contrast after linear gray level transformation, which will increase
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the local contrast of the original image. Histogram equalization can be expressed by the
following formula:

sk = T(rk) = (L− 1)
k

∑
j=0

pr
(
rj
)

=
(L− 1)

MN

k

∑
j=0

nj, k = 0, 1, 2, . . . , L− 1

(1)

where L is the number of possible gray levels in the image, MN represents the image pixels
number, and nk represents pixels number in rk gray scale. Figure 7 demonstrates the effect
of histogram equalization.

Figure 7. (a) Original image. (b) Histogram equalization image. (c) Original image histogram. (d)
Histogram after equalization. In the histogram, the abscissa represents the gray scale and the ordinate
represents the frequency.

After the gray level transform is the denoising process. The denoising algorithm
implemented in this paper is based on the wavelet soft-threshold algorithm [20], which
can be expressed in the following piecewise function:

f (x) =
{

sign(x) ◦ (|x| − α), |x| ≥ α
0, |x| ≤ α

(2)

where x represents the pixel’s gray value, α stands for the threshold value of the wavelet
soft-threshold algorithm, and this threshold value is defined by the following formula:

α = σ2
√

2 log(N2) (3)

where N represents the signal dispersion number, and through the experiment we set
σ = 25. Figure 8 shows the denoising effect with the algorithm.
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Figure 8. (a) Image before denoising. (b) Image after denoising.

The next step is contrast stretching. We used three stage contrast stretching methods
in this paper. The basic form of piecewise linear function is as follows.

f(x) =


y1
x1

x x < x1
y2−y1
x2−x1

(x− x1) + y1 x1 ≤ x ≤ x2
255−y2
255−y1

(x− x2) + y2 x < x2

(4)

The specific gray-scale restricting rule is shown in Figure 9, and in Figure 10 we give
the image before and after contrast stretching.

Figure 9. Gray-scale restricting rule.

Figure 10. (a) Previous image. (b) After contrast stretching.
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2.3. Image Registration

Image registration is the basis of fusion technology, which matches the same area of
two images. It is defined by the following formula:

R(x, y) = h[F( f (x, y))] (5)

where R means reference figure R and floating figure F. After making the transformation
of pixels of figure F correspond to pixels of figure R, the matching is completed [21].
Correspondence between two images follows: f (x, y) represents two-dimensional space
transformation and h(x, y) represents one-dimensional gray-scale transformation. Image
registration is the crucial step to realize image fusion. In order to highlight the diagnosis
results, it is necessary to make the previous image registration as accurate as possible.

In this paper, affine transformation was used as spatial geometric transformation of
registration. Affine transformation of two-dimensional Euclidean space is defined as:

S(X) = T(X) + C, X = [x, y]′,

T = [ab, cd]′, C = [e, f ]′
(6)

a∼ f are real numbers. x, y stands for the coordinate of each pixel. Transform S is affine
transform, which has the characteristic that a finite pixel is mapped to a finite pixel [22].
Two-dimensional affine transformation is linear, including translation, rotation, and scaling.
A coordinate point by affine transformation can be expressed as:[

x′

y′

]
= k×

[
cos θ sin θ
− sin θ cos θ

][
x
y

]
+

[
∆x
∆y

]
(7)

where x′, y′ stands for the coordinate of pixel after affine, k, θ, ∆x, ∆y are registration
parameters of the two images. This study divides the registration into four steps according
to the requirements, as described below. Step 1: read image. Step 2: initial registration
(coarse registration). The optimizer selects Powell algorithm, and similarity measure
selects the maximum mutual information method. Step 3: improve registration accuracy
by changing the optimizer’s step size and increasing iterations times. Step 4: use the
maximum mutual information as a reference to adjust the step size and iteration times, in
order to improve the accuracy. As an optimization strategy of image registration, the Powell
algorithm is a multi-parameter local optimization search algorithm that does not need
to compute derivatives [23]. Its essence divides the optimization phase into an iterative
process, which consists of n + 1 times one-dimensional search. First, an extremum point
is obtained after searching n times of different conjugate directions, and the initial value
of the search is searched in the direction of the extremum point connection. Then, the
latest search direction is replaced by the direction of the extreme points obtained in the
previous n times of search and keep iterating until the function stops decreasing. Maximum
mutual information method is a registration similarity measure [24]. Based on the gray
level of image, mutual information of two images is taken as the similarity measure, and
the optimal transform [23] is obtained by maximizing the similarity measure. The formula
is as follows:

I(A, B) = H(A) + H(B)− H(A, B) (8)

S∗ = argmax I(S(B), A) (9)

where H(A) and H(B) are the entropy of the image which indicates the gray distribution
of image. S∗ is the updated transform result.

2.4. Multimodal Pixel-Level Image Fusion

The core of wavelet fusion is multi-resolution fusion, which is like the multi-channel
characteristics of spatial frequency of human vision. Therefore, wavelet fusion has become
a hot topic. The two input images are decomposed by K-layer wavelet fusion to obtain
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3K+ 1 sub-image, and one sub-image is the low-frequency image of the highest K layer, and
the other 3K images are high frequency sub-images with different frequency characteristics
which is the high frequency image of the original image in the horizontal, vertical and
diagonal directions of the K layer. In this paper, we used traditional wavelet weighting
algorithm as a standard comparison, and we also proposed a modified wavelet fusion
algorithm, which is more suitable for MRI and PET fusion.

2.4.1. Traditional Wavelet Weighting Algorithm

Traditional wavelet algorithm decomposes image after registration by wavelet method
and obtains a wavelet coefficients matrix of different frequencies. Then, low-frequency
coefficients matrix and high-frequency coefficients matrix are both weighted and averaged
by their weighted coefficients that are set according to the characteristics of medical images.
Weighting coefficients used in this study is 0.5. After weighted average, low frequency
coefficients and high frequency coefficients matrix of the fused image are obtained. Finally,
the two coefficients matrixes are transformed, respectively, by wavelet inverse transform to
obtain fused image. The formula is as follows:

Ck = ωk(A)× Ck(A) + ωk(B)× Ck(B), (10)

Dk = Wk(A)× Dk(A) + Wk(B)× Dk(B) (11)

where A means the low frequency image, B is the high frequency image, Ck means low
frequency matrix, ωk means the weight parameter of matrix. Wk means the weight parame-
ter of inverse wavelet transform, Dk means the maximum value of the inverse transform
result.

2.4.2. Frequency Weighted Wavelet Fusion Algorithm

Frequency weighted wavelet fusion algorithm is similar to the traditional method in
the wavelet transform and weighted-average part. However, in the inverse transform part,
it calculates the mean square deviation, takes the maximum value to get the corresponding
high-frequency coefficients matrix. Finally, the two coefficients matrix is transformed by
wavelet inverse transform to obtain the fused image. The formula is as follows:

Ck = ωk(A)× Ck(A) + ωk(B)× Ck(B), (12)

Dk(F) = max[Dk(A), Dk(B)] (13)

where A means the low frequency image, B is the high frequency image, Ck means low fre-
quency matrix, ωk means the weight parameter of matrix, Wk means the weight parameter
of inverse wavelet transform, and Dk means the maximum value of the inverse transform
result.

3. Multi-Mode Image Fusion Results and Objective Evaluation
3.1. Multimodal Image Fusion Results

Taking a patient’s data from the database as an example, the results of three different
fusion images are displayed below in Figure 11.
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Figure 11. This figure displayed the different modalities space serial images of the same patient and
their fusion result. (a) The original MRI images. (b) The original PET images. (c) The fusion results of
the corresponding MRI and PET images.

3.2. Evaluation and Analysis of Fused Images

Although fused images cannot directly assist the diagnosis of the image like doctors, it
can give basic judgment from the nature of image. In order to comprehensively evaluate the
fusion algorithm of this paper, we selected six image evaluation parameters and displayed
them in Table 1.

According to the parameter evaluation formula above, the parameters of each al-
gorithm were calculated. Results are shown in Table 2, and the following analysis was
made according to the calculated result. We also use the significance test method to ob-
serve whether there is a significant difference, the p-value is less than 0.05, so a significant
improvement is made.

On the basis of the data analysis in the table, the improved wavelet fusion is superior
to the traditional wavelet fusion in spatial frequency, mean gradient, information entropy,
mutual information, cross entropy, and peak signal to noise ratio. Overall, the improved
wavelet fusion implemented in this research has better performance than the traditional
wavelet fusion.
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Table 1. Objective evaluation principle table.

Parameter Definition Formula Evaluation Criteria

Spatial Frequency (SF)
Spatial frequency reflects the overall activity level
of an image space and evaluates the degree of
image clarity.

SF =
√

RF2 + CF2

RF and CF are the row frequency and the column
frequency, respectively,

Larger SF refers to more active image and better
fusion effect.

Information Entropy (IE)
Information entropy refers to the probability
distribution of pixels of different gray levels in
space, and describes its detail expressive force.

IE = −
255

∑
m=0

Pm · log(Pm)

Pm is the probability that the gray scale m appears
in the image.

Bigger IE refers to richer details and better quality
of the fused image.

Mean Gradient (MG)
The average gradient represents the mean value
of image gradient, which reflects the change of
the gray level of image.

MG =
1

MN

M
∑

i=1

N
∑

j=1

√
∆xF(i, j)2 + ∆yF(i, j)2

∆xF(i, j) and ∆yF(i, j) represent the difference in
the x and y directions.

Higher MG refers to higher image contrast.

Cross Entropy (CERF)
Cross entropy is used to measure the difference of
information between two images, which reflects
the difference between the two-pixel levels.

CERF =
L−1

∑
i=0

PRi log
PRi

PFi

Smaller CERF difference refers to more
information the fusion method extracts

Peak Signal-to-Noise Ratio (PSNR) The peak signal-to-noise ratio measures the
realistic degree of the image.

PSNR = 10 · log10

 MAX2
I

MSE


MAXI represents the maximum value of the
image gray scale.

Higher PSNR refers to smaller distortion and
better fusion effect.
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Table 2. Objective evaluation results of fusion algorithm.

SE TE MG MI CERF PSNR

Traditional Wavelet Fusion 6.7249 4.8320 2.8021 0.3543 1.3224 26.5542
Improved Wavelet Fusion 8.3019 4.9741 3.4290 0.3117 1.2041 32.0910

p-value <0.001 0.011 <0.001 0.005 <0.001 0.017

4. Convolution Neural Network Assisting Diagnose

Figure 12 is the flow chart of data from the end of preprocessing to entering the
network and finally realizing classification.

Figure 12. Network training diagram.

4.1. Construction of Convolution Neural Network

In this paper, the project group designed and improved two CNN models and imple-
mented the diagnose model in training. Besides that, four other kinds of image classification
deep learning models, including, ResNet, GoogLeNet, Inception Net and AlexNet, were
also implemented as reference and comparison. First, the specific model structure and
training process of two CNN models we designed were introduced. Then, the MNIST
dataset was used to test their performance.

4.1.1. Convolution Neural Network Structure

The first convolutional neural network designed in this paper was based on the
classical convolutional neural network model LeNet-5 [18]. This CNN model had 10 layers,
and Figure 13 shows the CNN model structure.

Figure 13. Convolution neural network mode.

The first layer is the input layer. The input image is divided into three stages. Each
stage consists the convolution layer and the down-sampling layer. The convolution kernel
is 9 ∗ 9, and the down-sampling layer is sampled by 2 ∗ 2 region. Each stage has the
same structure and relative operation. The first stage output is six pieces of 60 ∗ 60 feature
graphs. The second stage output is 12 pieces of 26 ∗ 26 feature graphs. The third stage
finally forms 18 pieces of 9 ∗ 9 feature graphs after down-sampling, and each of graphs
has a corresponding bias term. The eighth layer is a convolution layer, which contains
120 feature graphs. Each element in the feature graph relates to the feature graph of the
previous layer. After 9 ∗ 9 convolution kernel operation, the size of the feature graph in
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this layer is 1 ∗ 1, which constitutes the full connection between the fifth and sixth layers.
The ninth full connected layer contains 84 neurons.

The final output layer consists of the Euclidean Radial Basis Function (RBF) unit,
and each represents a category. In this project Alzheimer’s disease diagnosis is a two-
classification problem that is ill or not, so the output layer has two units.

Before CNN training, parameter initialization is needed. Parameter initialization is
very important in the gradient descent algorithm. If the error surface is relatively flat, it will
lead to a very slow convergence rate. In general, more initialization weights are distributed
as follows:

W ∼ U

[
−

√
6√

P(l) + P(l−1)

√
6√

P(l) + P(l−1)

]
(14)

This is the representation of Xavier initialization, where P(l) means the number of
pixels in layer l, and each parameter will have the value from the interval specified by U.

CNN model training uses the back propagation (BP) algorithm. The main content of
the algorithm is divided into forward propagation and back propagation. First, the training
data is input into the CNN-10 model, and then the gradient of the weight and bias and
inverse calculation error is calculated by the convolution filtering, the down sampling and
the activation function, and the weight and bias are updated.

4.1.2. Improved Deformable U-Net (DeU-Net)

U-Net is a special CNN [25] that excels in image segmentation. We use U-net to process
data in this research, which is an approach of computer-aided diagnosis of Alzheimer’s
disease in PET images. Inspired by the network proposed by Dai in 2019 [26], we replace
the typical convolution kernel with deformable convolution in the network. Improved
structure of network is shown in Figure 14.

Figure 14. Convolution neural network mode.

This CNN architecture has symmetrical structure and deformable convolution kernels.
It consists path of the encoder and decoder, each formed by three layers. The encoder
path has two 3 ∗ 3 deformable convolution kernels and a down-sampling max-pooling
operator; similarly, the base layer also formed by two deformable convolution kernels with
this structure. Copy and crop between the encoder and the decoder helps the reservation
of information for localization [27]. Activation function is Rectified Linear Unit (ReLU). By
the Adam-Optimizer based on gradient decent, the parameters are relatively stable and
promote their dynamic adjustment.

Definition of deformable convolution kernel:

Zl+1(i, j) =
K1

∑
k=1

f

∑
x=1

f

∑
y=1

[Zl
k(s0i + x, s0 j + y)wl+1

k (x + ∆x, y + ∆y)], (15)
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Zl+1(p) =
K1

∑
k=1

f

∑
x=1

f

∑
y=1

[
Zl

k(p0)wl+1
k (∆pn)

]
(16)

where Zl represents the input of convolution layer l and Z(l+1) represents output. Z(p) is
the value of pixels on the feature map. f , s0, K1 represents size, stride, and padding layers
size of the convolution kernel, respectively. In this equation ∆x, ∆y can be fractional, the
bilinear interpolated wl+1

k as follows:

wl+1
k (p) =

q

∑
x=1

q

∑
y=1

u(qw, pw)u(qz, pz)w(q) (17)

where p represents the arbitrary fractional pixels and q represents integral pixels in the
feature map. The definition of Kernel u is:

u(x, y) = max(0, 1− |m− n|) (18)

In every layer, we used deformable kernels to work in the same way rather than
implementing different kernels for each layer, this will improve network performance.
Using the back-propagation method, the network was trained end-to-end with labeled
PET/MRI/fusion Images.

Feature map pixels soft-max classifier with cross entropy loss function is the energy
function, this classifier is:

Sk(x, y) =
eAk(x,y)

∑K
x=1 ∑K

y=1 eA′k(x,y) (19)

Ak(x, y) represents the activated feature pixels in layer k, and the pixels number in the
feature map is K.

The energy function is:

E =
K

∑
x=1

K2

∑
y=1

v(x, y) log
(

sl(x,y)(x, y)
)

(20)

where v(x, y) is pixel weight map function that previously defined, inspired by Ronnen-
berger [25]:

v(x, y) = wc(x, y) + v0 exp

(
− (d1(x, y) + d2(x, y))2

2σ2

)
(21)

To avoid excessive activation of some pixels and reduce errors, the weight of U-net
needs to initialize. We set σ = 8 and v0 = 10 to obtain better performance. Epoch was set
at 10,000, learning rate 0.01.

4.2. Performance Testing of Convolutional Neural Networks

After the construction of convolutional neural network, research needs to test the
performance of CNN model before formal training diagnosis. Network performance was
validated by testing 60,000 handwritten digits downloaded from the MNIST database.

Testing progress was done by the following specific test method: first, 60,000 pieces of
128 ∗ 128 handwritten numbers and their corresponding labels were read into the CNN
model. In view of the large amount of data, the 10-fold cross validation method was used
to train the generalization ability of CNN model. One-fold cross validation is a method
derived from the k-fold cross validation. By stratified sampling from the data set D, K,
exclusive subsets of similar size can be separated mutually. Each cycle took a group as a
test set and the rest of k-1 groups were training sets. After k times of training and testing
were carried out, the average accuracy rate of k-group test represents the accuracy of the
deep learning model [28]. Accuracy rate result of the applied different training tests is
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shown in Table 3. CNN and DeU-Net are the networks that the project group built, and the
rest of the network is preset architecture as reference.

Table 3. Accuracy table of 10-fold cross validation.

K-Fold CNN DeU-Net GoogLeNet InceptionV3 MobileNetV2 VGG16

1 92.35% 92.78% 91.02% 93.04% 92.84% 92.99%
2 95.32% 95.32% 95.66% 95.46% 95.10% 93.56%
3 96.52% 96.52% 96.78% 96.43% 96.32% 96.73%
4 96.97% 96.97% 97.01% 96.99% 96.57% 96.81%
5 97.45% 97.45% 97.62% 97.41% 97.28% 97.39%
6 97.52% 97.74% 97.81% 97.76% 97.86% 97.68%
7 97.76% 97.88% 97.92% 97.81% 97.95% 97.89%
8 97.83% 97.92% 97.92% 97.92% 97.98% 98.00%
9 97.96% 98.01% 98.01% 97.99% 98.04% 98.03%

10 98.03% 98.05% 98.02% 98.01% 98.06% 98.08%

Increasing training times can get better accuracy of the convolutional neural network.
High accuracy of the network model test proves that the model has great performance, and
the parameter settings of the hidden layer of the model was relatively correct.

4.3. Training and Testing Process

In order to validate the significance of image fusion, single modality images and multi-
modal fusion images were trained in both CNN and U-Net models, and the performance of
each model were compared to determine which model has the relatively better diagnostic
effect. Figure 15 illustrates the constitution of the single modality images dataset and the
fusion images dataset.

Figure 15. Constitution of the implemented datasets.

4.3.1. Single Modality Image Training Model

T2-MRI and PET image of the same parts of brain from 101 patients with Alzheimer’s
disease and 80 normal cognitive people as control groups in total 5430 images of each
modality were collected from the ADNI database and stored separately in two three-
dimensional matrices. Each matrix was read into the network with its corresponding
binary classification label. Because of the few training and test data, it was necessary to use
the set aside method to verify the generalization ability of CNN.

Set aside was the method that divided data set D into two mutually exclusive sets,
one of which was the training set S, and the other one is the test set T. After the model
training completed, S and T was used to evaluate the test error [27].
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4.3.2. Fusion Image Training Model

Multi-modal fusion algorithm has the highest objective evaluation of all fusion algo-
rithm. T2-MRI and PET images of the same person in the single modality training model
are automatically fused. The training and verifying process was the same as the MRI and
PET images training model.

5. Diagnosis Results and Analysis
5.1. Convolution Neural Network Diagnostic Results
5.1.1. Single Modality Training Model

By setting aside method, 3008 images were used as training sets, and 1534 images
were used as evaluation set. After training and testing, the diagnostic accuracy used MRI
only images of CNN reached 80.65% and the U-Net reached 84.17%. By using the similar
method, results of training with PET only images were also achieved. Mean and SD of
AUC shown as Table 4:

Table 4. Mean and SD of AUC with single modality images.

CNN DeU-Net InceptionV3 MobileNetV2 VGG16

Train 0.914 ± 0.072 0.962 ± 0.075 0.815 ± 0.145 0.970 ± 0.013 0.955 ± 0.012
Test 0.922 ± 0.075 0.926 ± 0.029 0.827 ± 0.151 0.908 ± 0.017 0.917 ± 0.018

Validation 0.899 ± 0.048 0.906 ± 0.028 0.809 ± 0.127 0.920 ± 0.064 0.905 ± 0.019

The detailed training results are shown in Table 5.

Table 5. Performance of different neural network in training with single modality images.

AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

CNN Train 0.914 87.1 90.2 91.4 94.5 89.7
Test 0.922 89.6 91.4 90.5 91.2 88.7

Validation 0.899 84.5 88.7 89.1 86.9 84.4

DeU-Net Train 0.962 89.9 98.1 89.9 92.1 87.1
Test 0.926 90.4 94.1 83.2 94.3 83.6

Validation 0.906 89.5 92.6 81.9 97.9 87.3

GoogLeNet Train 0.852 79.6 83.6 80.1 82.4 84.7
Test 0.871 77.5 85.4 79.7 81.6 83.5

Validation 0.839 80.0 78.1 80.5 80.0 79.1

InceptionV3 Train 0.815 78.8 80.8 90.3 80.8 79.0
Test 0.827 79.7 81.0 89.1 81.0 73.5

Validation 0.809 77.3 78.7 92.1 88.1 81.2

MobileNetV2 Train 0.970 95.9 98.4 96.5 98.2 94.2
Test 0.908 88.4 94.7 90.2 94.7 82.5

Validation 0.920 81.0 96.3 91.9 95.4 87.1

VGG16 Train 0.955 86.4 95.3 97.1 95.3 94.9
Test 0.917 87.7 91.5 93.2 91.5 86.2

Validation 0.905 81.1 90.1 91.0 89.7 84.1

In Table 5, AUC means area under the receiver operating characteristic curve. AUC
represents the degree of differentiation of different categories, the value is proportional to
the probability that the model is correctly classified. ACC means accuracy, and its value is
proportional to the overall prediction performance. SENS means sensitivity. In SENS, the
numerator is the number of positive samples predicted to be correct, and the denominator
is the number of positive samples predicted to be negative, also known as the recall rate,
indicating how many positive samples predicted to be correct. SPEC means specificity,
which is contrary to SENS. SPEC indicates how many of the negative samples are predicted
to be correct. PPV means positive predict value, which is based on the result of prediction,
and it represents the amount of the samples predicted to be positive were correct. There
are two possible ways to predict a positive class, one is to predict a true positive (TP), and
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the other is to predict a false positive (FP). NPV means negative predict value, which is
contrary to PPV. NPV represents how many of the samples predicted to be negative were
correct. Test means training cohorts. Validation means validation cohort. Prove means
independent prove cohort. Factors above were calculated by the following formulas:

ACC =
nright

nfalse + nright
(22)

SENS =
Tpositive

Tpositive + Fnegative
(23)

SPEC =
Tnegative

Tnegative + Fpositive
(24)

PPV =
Tpositive

Tpositive + Fpositive
(25)

NPV =
Tnegative

Tnegative + Fnegative
(26)

where nright is the correctly predicted samples and nfalse is the falsely predicted samples.
Tpositive is the correctly predicted positive sample. Tnegative is the correctly predicted
negative sample. Fpositive is the falsely predicted positive sample. Fnegative is falsely
predicted negative sample.

In Figure 16, we also provide the confusion matrix in this case.

Figure 16. Confusion matrix of DeU-Net with single modality images.

5.1.2. Fusion Image Training Model

According to the objective evaluation of the fused images, the best algorithm is the
frequency weighted wavelet fusion algorithm. Therefore, the fused image set was selected
to train different models. In order to compare different performance between models in
diagnosing Alzheimer’s disease, multiple deep learning models were implemented. Mean
and Sd of AUC shown are in Table 6.

Table 6. Mean and SD of AUC with fusion images.

CNN GoogLeNet DeU-Net InceptionV3 MobileNetV2 VGG16

Train 0.935 ± 0.042 0.916 ± 0.053 0.967 ± 0.022 0.891 ± 0.038 0.945 ± 0.050 0.949 ± 0.040
Test 0.927 ± 0.046 0.909 ± 0.017 0.929 ± 0.037 0.922 ± 0.046 0.909 ± 0.065 0.928 ± 0.010

Validation 0.916 ± 0.053 0.897 ± 0.013 0.941 ± 0.017 0.849 ± 0.043 0.899 ± 0.063 0.856 ± 0.027
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Detailed training results were listed in Table 7.
In Table 7, AUC means area under the receiver operating characteristic curve. ACC

means accuracy. SENS means sensitivity. SPEC means specificity. PPV means positive
predict value. NPV means negative predict value. Test means training cohorts. Validation
means validation cohort. Prove means independent prove cohort. We also recorded the
training loss curve of DeU-Net, where orange represents the training set and blue represents
the test set. It can be seen from Figure 17 that the training loss decreases steadily, which
shows the good performance in training.

Table 7. Performance of different neural network in training with fusion images.

AUC ACC (%) SENS (%) SPEC (%) PPV (%) NPV (%)

CNN Train 0.935 89.4 93.1 95.2 88.2 88.2
Test 0.927 91.5 92.5 93.4 91.0 93.3

Validation 0.916 90.9 90.9 90.9 89.5 89.5

DeU-Net Train 0.967 95.7 97.9 94.8 90.2 88.2
Test 0.929 91.6 95.1 87.1 95.1 85.6

Validation 0.941 90.5 92.4 84.0 99.7 84.9

GoogLeNet Train 0.916 91.1 88.5 86.4 84.9 77.3
Test 0.909 88.4 86.1 82.3 87.6 71.5

Validation 0.897 86.0 79.2 81.7 77.5 82.1

InceptionV3 Train 0.891 85.1 78.4 95.1 85.3 85.2
Test 0.922 89.3 85.0 90.7 82.0 71.5

Validation 0.849 81.2 82.3 94.0 89.0 91.2

MobileNetV4 Train 0.945 91.4 94.3 96.0 96.9 93.0
Test 0.909 89.7 92.5 90.2 97.2 86.7

Validation 0.899 88.1 99.2 88.9 94.9 82.0

VGG16 Train 0.949 89.9 94.2 97.2 98.2 92.9
Test 0.928 88.5 92.5 93.1 97.3 89.6

Validation 0.856 84.2 83.9 87.0 84.9 83.9

In Figure 18, we also provide the confusion matrix in training with fusion images.

Figure 17. Training loss with fusion images.
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Figure 18. Confusion matrix of DeU-Net with fusion images.

5.1.3. Comparison between Single Modality and Fusion Modality

Table 8 shows comparisons of different neural network accuracy between single
modality and fusion images. Notes that the proposed fusion method yields better perfor-
mance than implementing only a single modality image in training deep learning models.
All of the fusion image trained models outperformed the single modality image trained
models. Fusion images training can improve accuracy of classification. In training cohort,
testing cohort and validation cohort, fusion images significantly raised AUC than training
with single modality images.

Table 8. Comparison between single modality images and fusion images implemented in training
different deep learning models.

Dataset Modality ACC (%) AUC (%)

CNN Single 84.5 89.9
Fusion 90.9 91.6

DeU-Net Single 89.5 90.6
Fusion 90.5 94.1

GoogLeNet Single 80.0 83.9
Fusion 86.0 89.7

InceptionV3 Single 77.3 80.9
Fusion 81.2 84.9

MobileNetV2 Single 81.0 92.0
Fusion 88.1 89.9

VGG16 Single 81.1 90.5
Fusion 84.2 85.6

6. Discussion

In this study, we developed and validated a pixel-based image fusion method based
on brain conventional T2-weighted MRI and 18F-FDG PET-CT images for prediction of
Alzheimer’s disease. This method showed significantly better diagnostic performances in
distinguishing patients with an Alzheimer’s disease and cognitive normal patients than
any single method.

Diagnostic information in fusion image is more abundant because the fused image
integrates the anatomical information and the metabolic function information. Resulting
from the above, it can be analyzed that fusion images improved the performance of
the two CNN models that were built by the project group, as CNN and DeU-Net have
significant improvement in diagnosing accuracy. Meanwhile, DeU-Net has better accuracy
or performance in processing medical images than traditional CNN. However, fusion
images training in other pretrained models represents irregularity performance.

This result demonstrated that multimodal fusion can improve the diagnostic rate of
Alzheimer’s disease and confirms that multimodal fusion technology is greatly significant
in the diagnosis of Alzheimer’s disease. The result also proved that the multimodal image
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fusion based on convolutional neural networks has important research value. At the same
time, one of the problems in this paper is that the accuracy of the diagnostic models still
needs to be improved. The number of samples currently diagnosed by Alzheimer’s disease
is 182 (102 patients and 80 people without disease) much less than the MNIST set, while
the number of sample sets for digital identification is 60,000. One of the reasons for the low
accuracy is that the number of training samples is too small, so the extracted features are
not obvious.

7. Conclusions

In order to assist doctors in the accurate diagnosis of Alzheimer’s disease, this paper
conducted an in-depth study of multi-modal image fusion technology. First, the traditional
wavelet fusion of T2-MRI and PET modal images of Alzheimer disease patients were
studied, and then a wavelet fusion algorithm that is more suitable for medical image fusion
was proposed. Based on the evaluation of objective evaluation parameters, we found that
the improved wavelet fusion algorithm has better performance than the traditional wavelet
fusion algorithm on the testing accuracy.

This paper first improved and implemented the traditional convolution neural net-
work and U-Net in the diagnosis of Alzheimer’s disease in order to explore their diagnostic
characteristics. It turned out that this modification of CNN has significantly improved the
performance of CNN in processing with Alzheimer’s disease medical images. Additionally,
this paper first implemented a fusion image technique in Alzheimer’s disease diagnosing
and proved the efficiency of diagnosing using fusion images by implementing different
deep learning models, including some pretrained models.

This paper designed two image sets training with six different deep learning structures
in the same training process. MRI, PET and fusion images of Alzheimer’s disease were
trained and tested, respectively. Results of these tests demonstrated that the accuracy of
fusion image is higher than that of single mode. In a word, pixel-based multi-modal fusion
images applying on convolution neural network can have an outstanding diagnostic effect
on the diagnosis of Alzheimer’s disease.

Similar to the problems encountered by Liu et al. [9], the author is also actively
exploring solutions to the problem of incomplete data, such as using semi-supervised
learning or unsupervised learning. The authors also notice that the experiment focuses on
binary classification, and the task of multiple classification has not been involved, and plan
to focus on it in future research.
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